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Exact TÄ0 partition functions for Potts antiferromagnets on sections of the simple cubic lattice
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We present exact solutions for the zero-temperature partition function of theq-state Potts antiferromagnet
~equivalently, the chromatic polynomialP) on tube sections of the simple cubic lattice of fixed transverse size
Lx3Ly and arbitrarily great lengthLz , for sizes Lx3Ly5233 and 234 and boundary conditions~a!
(FBCx ,FBCy ,FBCz) and~b! (PBCx ,FBCy ,FBCz), where FBC~PBC! denote free~periodic! boundary condi-
tions. In the limit of infinite length,Lz→`, we calculate the resultant ground-state degeneracy per siteW
~5exponent of the ground-state entropy!. Generalizingq from Z1 to C, we determine the analytic structure of
W and the related singular locusB which is the continuous accumulation set of zeros of the chromatic
polynomial. For theLz→` limit of a given family of lattice sections,W is analytic for realq down to a value
qc . We determine the values ofqc for the lattice sections considered and address the question of the value of
qc for a d-dimensional Cartesian lattice. Analogous results are presented for a tube of arbitrarily great length
whose transverse cross section is formed from the complete bipartite graphKm,m .

DOI: 10.1103/PhysRevE.64.011111 PACS number~s!: 05.20.2y, 64.60.Cn, 75.10.Hk
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I. INTRODUCTION

The q-state Potts antiferromagnet@1,2# exhibits nonzero
ground-state entropy,S0.0 ~without frustration! for suffi-
ciently largeq on a given latticeL or, more generally, on a
graphG. This is equivalent to a ground-state degeneracy
siteW.1, sinceS05kB ln W. Such nonzero ground-state e
tropy is important as an exception to the third law of th
modynamics@3,4#. One physical example is provided by ic
for which the residual molar entropy isS050.82
60.05 cal/(K mol), i.e., S0 /R50.4160.03, where R
5NAvog.kB @5#. Indeed, residual entropy at low temperatur
has been observed in a number of molecular crystals, inc
ing nitrous oxide, NO and FClO3 ~a comprehensive review i
given in Ref.@6#!. In these physical examples, the entro
occurs without frustration, i.e., the configurational ener
can be minimized, just as in the Potts antiferromagnet
sufficiently largeq.

There is a close connection with graph theory here, si
the zero-temperature partition function of the abov
mentioned q-state Potts antiferromagnet on a graphG
5(V,E) satisfies

Z~G,q,T50!PAF5P~G,q!, ~1.1!

whereG is defined by its set of verticesV and edgesE and
P(G,q) is the chromatic polynomial expressing the numb
of ways of coloring the vertices ofG with q colors such that
no two adjacent vertices have the same color~for reviews,
see@7–10#!. The minimum number of colors necessary f
such a coloring ofG is called the chromatic numberx(G).
Thus

W~$G%,q!5 lim
n→`

P~G,q!1/n, ~1.2!

*Email address: jesus@melkweg.unizar.es
†Email address: robert.shrock@sunysb.edu
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wheren5uVu is the number of vertices ofG and we denote
the formal infinite-length limit of strip graphs of typeG as
$G%5 limn→` G. At certain special pointsqs @typically qs
50,1, . . . ,x(G)#, one has the noncommutativity of limit
@11#

lim
q→qs

lim
n→`

P~G,q!1/nÞ lim
n→`

lim
q→qs

P~G,q!1/n ~1.3!

and hence it is necessary to specify the order of the limits
the definition ofW($G%,qs). DenotingWqn andWnq as the
functions defined by the different order of limits on the le
and right-hand sides of Eq.~1.3!, we takeW[Wqn here; this
has the advantage of removing certain isolated disconti
ties that are present inWnq . Using the expression fo
P(G,q), one can generalizeq from Z1 to C. The zeros of
P(G,q) in the complexq plane are called chromatic zeros;
subset of these may form an accumulation set in then→`
limit, denotedB, which is the continuous locus of point
whereW($G%,q) is nonanalytic. For some families of graph
B may be null, andW may also be nonanalytic at certa
discrete points. The maximal region in the complexq plane
to which one can analytically continue the functio
W($G%,q) from physical values where there is nonze
ground-state entropy is denotedR1. The ground-state degen
eracy per siteW($G%) is an analytic function of realq from
large values down to the valueqc , which is the maximal
value whereB intersects the~positive! real axis. For some
families of graphs,B does not cross or intersect the realq
axis; in these cases, noqc is defined. However, even in case
where no such intersection occurs,B often includes
complex-conjugate arcs with end points close to the posi
real axis, and hence, in these cases, it can be useful to d
a quantity (qc)eff equal to the real part of the end points. W
shall use this definition here.

In this work we present exact solutions for chroma
polynomials P(G,q) for sections of the simple cubic~sc!
lattice with fixed transverse sizeLx3Ly and arbitrarily great
©2001 The American Physical Society11-1
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JESÚS SALAS AND ROBERT SHROCK PHYSICAL REVIEW E64 011111
lengthLz , for cross sectionsLx3Ly5332 and 432. These
calculations are carried out for the cases~a!
(FBCx ,FBCy ,FBCz) ~rectangular solid! and ~b!
(PBCx ,FBCy ,FBCz) ~homeomorphic to an annular cylindr
cal solid!, where FBCi and PBCi denote free and periodi
boundary conditions in thei th direction, respectively. We
shall use the notation (Li)F and (Li)P to denote free and
periodic boundary conditions in thei th direction, so that, for
example, the 3323Lz sections of the simple cubic lattic
with the boundary conditions of type~a! and~b! are denoted
3F32F3(Lz)F and 3P32F3(Lz)F , respectively. For each
family of graphs, taking the infinite-length limitLz→`, we
calculateW($G%,q), B, and henceqc .

We also present corresponding results for a tube of a
trarily great length whose transverse cross section is form
from the complete bipartite graphKm,m , for the casesm
52 and 3. Here the complete graphKn is defined as the
graph consisting ofn vertices such that each vertex is co
nected by edges~bonds! to every other vertex, and the com
plete bipartite graphKm,n is defined as the joinKm1Kn ,
where the join of two graphsG andH, denotedG1H is the
graph obtained by joining each of the vertices ofG to each of
the vertices ofH. Although the complete bipartite graphs a
not regular lattices as studied in statistical mechanics, t
are useful since they allow us to obtain exact results for ca
of high effective coordination number.

There are several motivations for this work. We ha
mentioned the basic importance of nonzero ground-state
tropy in statistical mechanics and physical examples of
phenomenon. From the point of view of rigorous statisti
mechanics, exact analytic solutions are always valuable s
they complement results from approximate series expans
and numerical methods. We have defined the pointqc above
in terms of the functionW($G%,q). This point has anothe
important physical significance: for then→` limit of a
given family of graphs,$G%, the q-state Potts antiferromag
net has no finite-temperature phase transition but is di
dered for allT>0 if q.qc($G%), and has a zero-temperatu
critical point for q5qc($G%) @12#. For the Potts model on
the ~infinite! square lattice, via a mapping to a vertex mod
it has been concluded thatq53 @15#. However, the value of
qc is not known for any lattice of dimension three or highe
One of the main motivations for our study is the insight th
one gains concerning the dependence ofqc on the coordina-
tion numberD52d of a d-dimensional Cartesian latticeEd

for the cased53. Furthermore, although infinite-length se
tions of higher-dimensional lattices with fixed finit
(d21)-dimensional volume transverse to the direction
which the length goes to infinity are quasi-one-dimensio
systems and hence~for finite-range spin-spin interactions! do
not have finite-temperature phase transitions, their ze
temperature critical points are of interest. Finally, in additi
to the physics motivations, the present results are of inte
in mathematical graph theory. Some related earlier work i
Refs.@13–50#.

Our exact calculations ofqc for the infinite-length limits
of tube sections of the simple cubic lattice yield informati
relevant to estimates ofqc for the infinite cubic lattice. The
01111
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point here is that as the area of the transverse cross secti
the tube increases to infinity, the corresponding sequenc
exactqc or (qc)eff values is expected to converge to a lim
For the tube sections considered here, which have free
gitudinal boundary conditions, this limit is a lower boun
for the trueqc of the infinite simple cubic lattice. The reaso
that one can only say that it is a lower bound is that
these families with free longitudinal boundary conditio
the respective limiting curveB exhibits a complex-conjugate
pair of prongs that protrude to the right. It is possible th
as the area of the transverse cross section goes to infi
the endpoints of these prongs will extend over and mee
the real axis, thereby defining a pointqc that could lie to
the right of the limit of theqc points for each of the
tubes with finite transverse cross section. In this ca
limLx ,Ly→` qc„sc, (Lx)BCx3(Ly)BCy3`F… is not equal to,

but instead less than, the valueqc(sc) for the infinite simple
cubic lattice. Indeed, for finite-width, infinite-length strips o
the triangular lattice with free longitudinal~z! boundary con-
ditions and periodic transverse (y) boundary conditions,
limLy→` qc((Ly)P3`F).3.819 67 . . . while qc54 for the

infinite triangular lattice@23#. This occurs because of th
above-mentioned phenomenon in which the endpoints of
complex-conjugate pair of prongs protruding to the right
the limiting curveB move inward toward the real axis and
asLy→`, finally touch each other, thereby defining the tr
qc54 about 5% greater than the above limit at;3.82. The
presence of these types of prongs protruding to the righ
the limiting curves was also observed for a variety
infinite-length, finite-width two-dimensional~2D! lattice
strips with free longitudinal boundary conditions~for both
free and periodic transverse boundary conditions! @30,31,45–
47,50#. Calculations forLP3`F ~i.e., cylindrical! strips of
the square lattice have been carried out in@31,46,47,50# with
widths L extending up to 13@50#, with qc(sq, 13P3`F)
.2.916. This value is within about 3% of the value for th
infinite square lattice,qc(sq)53. As the width increases, th
end points of the prongs do move in toward the real ax
These calculations forLP3`F strips of the square lattice ar
consistent with either of the two possibilities, th
limL→` qc(sq,LP3`F) is equal to, or slightly less than
qc(sq).

It is interesting that the exact calculations of the singu
loci B for infinite-length, finite-width strips of various lat
tices with periodic longitudinal boundary conditions@51#
~and either free or periodic transverse boundary conditio!
yielded loci without such complex-conjugate prongs~or line
segments on the real axis! @11,36,46,40,49,45#. For these
families of strips it was found thatB always crossed the
positive real axis atq50 and at a maximal point, soqc is
always defined; furthermore,LF3`P, the value ofqc is a
monotonically nondecreasing function of the width. ForLP
3`P strips, althoughqc is not a nondecreasing function o
the width, it is, for a given width, closer to the value for th
infinite 2D lattice if one uses periodic, rather than free tra
verse boundary conditions, as one would expect since
former minimize finite-size effects.
1-2
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Some definitions from graph theory will be useful he
The degree of a vertex in a graphG5(V,E) is the number of
edges to which it is attached. A graphG defined to beD
regular if each of its vertices has the same degree,D. This is,
in particular, true of an infinite regular lattice, where th
degree is the coordination number. Even if some verti
have different degrees from others, one can define an e
tive coordination number,

Deff5 lim
uVu→`

2uEu
uVu

. ~1.4!

For example, for a strip of the square lattice of size of
type (Lx)F3(Ly)F , in the limit in which the lengthLx→`
with fixed finite widthLy

Deff„sq,~Lx!F3~Ly!F ;Lx→`…542
2

Ly
. ~1.5!

For the same strip, but with periodic transverse bound
conditions, ifLy>3 to avoid double edges, we have

Deff„sq,~Lx!F3~Ly!P;Lx→`…54. ~1.6!

For the (Lx)F3(Ly)F3(Lz)F section of the simple cubic lat
tice with free boundary conditions in all three directions, t
interior vertices have degree 6, the vertices on the sur
away from the corners have degree 4, and the corner ver
have degree 3. For the minimal case 2F32F3(Lz)F , there
are no interior vertices in the 3D sense, so that

Deff„sc,2F32F3~Lz!F ;Lz→`…54. ~1.7!

For the next case (Lx)F32F3(Lz)F with Lx>3 there are
also no interior vertices in the 3D sense; in this case

Deff„sc,~Lx!F32F3~Lz!F ;FBCx ,FBCy ,FBCz ;Lz→`…

552
2

Lx
. ~1.8!

For theLz→` limit of the Lx3Ly3Lz section withLx>3,
Ly>3, we have

Deff„sc,~Lx!F3~Ly!F3~Lz!F ; Lz→`…5622
~Lx1Ly!

LxLy
.

~1.9!

We shall also use the corresponding formulas when perio
rather than free boundary conditions are imposed in one
the transverse directions. Of course, in the usual thermo
namic limit of the Cartesian latticeEd, with Li→`, i
51, . . . ,d and limLi→`Li /L j equal to a finite nonzero con

stant, the effective degree isDeff(E
d)52d independent of

boundary conditions. In this case, although free bound
conditions in one or more directions entail vertices of low
degree than 2d, these vertices occupy a vanishing fraction
the total vertices in the thermodynamic limit. Concerning t
chromatic number, for the sections of 3D lattices conside
here, we have
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x„sc,~Lx!F3~Ly!F3~Lz!F…52, ~1.10!

i.e., these graphs are bipartite. For the sections of the sim
cubic lattice with periodic boundary conditions in one of t
transverse direction, taking this to be thex direction with no
loss of generality,

x„sc,~Lx!P3~Ly!F3~Lz!F…5H 2 if Lx is even

3 if Lx is odd.
~1.11!

For an infinite regular lattice having coordination numberD,
a rigorous upper bound onqc was derived in@13# using the
Dobrushin theorem:

qc<2D. ~1.12!

Aside from the general property that, for cases where ther
a qc , this point satisfiesqc>2, we are not aware of a pub
lished lower bound onqc .

We have noted that in the infinite-length limit of give
family of lattice strip graphs,B does not necessarily interse
or cross the realq axis, and if there is no such crossing, th
there is noqc . It has been found that for a graph consisti
of a strip of a regular lattice, a sufficient condition forB to
cross the~positive! real q axis is that there be periodi
boundary conditions in the longitudinal direction, i.e., t
direction in which the length goes to infinity asn→` @11–
41#.

An interesting question is howqc depends on the lattice
coordination number, equivalent to the vertex degree for
infinite lattice. For families ofLx3Ly lattice strip graphs
with periodic longitudinal (Lx) boundary conditions, whose
Lx→` limits are guaranteed to have aqc , it is found that the
value ofqc is a nondecreasing function of the effective ve
tex degreeDeff . Thus, for the family of cyclic strips of the
square lattice with free transverse boundary conditions,
sides the 1F3`F case withD52 andqc52, one finds the
following results:~i! 2F3`F(D53) yields qc52 @11#, ~ii !
3F3`F(Deff510/3) yields qc.2.3365 @36#, ~iii ! 3F
3`F(Deff57/2) yields qc.2.4928 @46#. When one makes
both the longitudinal and transverse boundary conditions
riodic, the vertex degree is fixed. In this case,qc does not
necessarily increase with increasing widthLy . For example,
for strips of the square lattice with toroidal boundary con
tions and henceD54, the 3P3`P strip yieldsqc53 @40#
while the 4P3`P strips yields the smaller valueqc.2.78
@49#.

When one considers strips without periodic longitudin
boundary conditions, there may or may not be aqc . We have
found that for strips with free transverse and longitudin
boundary conditions,qc or (qc)eff , where the latter can be
defined, is a monotonically increasing function ofLy , and
since in these families of lattice strips,Deff is a monotoni-
cally increasing function ofLy , this means that (qc)eff is also
a monotonically increasing function ofDeff . Thus, for 1F
3`F with Deff52 and 2F3`F with Deff53, B5B and
there is no (qc)eff , while 3F3`F with Deff510/3 yieldsqc
52 @30#, 4F3`F with Deff57/2 yields qc.2.3014 @30#,
1-3
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5F3`F with Deff53.60 yieldsqc.2.428@46,47#, etc. up to
8F3`F with Deff53.75, which yields arc endpoints atq
.2.660360.0013i and hence (qc)eff52.6603@47#.

In contrast, for strips with free longitudinal and period
transverse boundary conditions,Deff is fixed, e.g., equal to 4
for strips of the square lattice. Insofar as one expectsqc or
(qc)eff to depend onDeff , it is not clear,a priori, how these
quantities should behave as functions ofLy . Indeed, one
finds thatqc or (qc)eff have no monotonic dependence
Ly . For example, for 3P3`F , B5B, 4P3`F yields qc

.2.3517 @31#, 5P3`F yields qc.2.6917 @46,47#, but 6P

3`F yields qc.2.6132 @46,47#. For 7P3`F , B has arc
endpoints near the real axis atq.2.751560.0025i , so
(qc)eff.2.7515@47#. For the cases (Ly)P3` up toL511, it
is found empirically thatqc or (qc)eff is monotonically in-
creasing separately for the even-Ly and odd-Ly sequences
@50#.

Sinceqc has thermodynamic significance as the value oq
above which the Potts antiferromagnet has no fin
temperature phase transition and is disordered even atT50,
the value ofqc for a lattice with dimensionalityd>2 should
be independent of the boundary conditions used to take
thermodynamic limit.~Strictly speaking, this is not true fo
d51, since noqc is defined for the infinite-length limit of
the line graph, whileqc52 for the infinite-length limit of the
circuit graph, but this may be considered to be an excep
due to the special nature of this graph.! For the infinite 2D
lattices whereqc is known exactly, it is also a monotonicall
increasing function of the lattice coordination number. S
cifically, as noted above, on the square lattice (D54), one
hasqc53 @16#. For the kagome´ lattice, again withD54, one
findsqc53 @17#, and on the triangular lattice withD56, one
hasqc54 @23#.

These exact results are all consistent with the infere
that the value ofqc increases as a function of the coordin
tion number for the thermodynamic limit of a regular latti
or, more generally, for infinite-length strips or tubes of reg
lar lattices with prescribed boundary conditions in the tra
verse directions. A plausibility argument for this is as fo
lows. Forq.qc , the zero-temperature Potts antiferromag
has nonzero ground-state entropy per site,S5kB ln W.0,
i.e., ground-state degeneracy per siteW.1. This entropy
reflects the fact that the number of ways of carrying ou
proper coloring of the lattice or lattice strip increases ex
nentially with the number of vertices. Roughly speaking,
constraint that no two adjacent vertices can be assigned
same color is more restrictive the greater the number
neighboring vertices there are, i.e., the greaterDeff is. There-
fore, as one increasesDeff for a fixedq, W decreases. This is
borne out by exact and numerical calculations ofW ~for 2D
lattices, see, e.g., Fig. 5 of@11# or Fig. 6 of @29#!. In the
context ofd-dimensional Cartesian lattices, this means t
qc should increase as a function ofd. Such a monotonicity
relation is valuable to have since the value ofqc is not
known exactly for lattices with dimensiond>3.

It is useful to define a ratio of the actual value ofqc to the
upper bound in Eq.~1.12!, namely,
01111
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qc

2D
. ~1.13!

Evidently,Rqc
50.5 for the infinite-length limit of the circuit

graph andRqc
50.375 for the infinite square lattice. Sim

larly, for other exactly known cases, the actual value ofqc is
considerably less than the rigorous upper bound~1.12!. This
suggests that it may be possible to improve the upper bo
~1.12!.

A generic form for chromatic polynomials for a stri
graph of typeGs , or, more generally, a recursive family o
graphs composed ofm repetitions of a basic subgraph, is@22#

P~Gs ,m,q!5 (
j 51

NGs ,l

cGs , j~q!@lGs , j~q!#m, ~1.14!

wherecGs , j (q) and theNGs ,l terms~eigenvalues! lGs , j (q)

depend on the type of strip graphGs including the boundary
conditions but are independent ofm. Here, Nl<dim(T),
where dim(T) is the dimension of the transfer matrix in th
Fortuin-Kasteleyn representation, and the difference,N0a
5dim(T)2Nl , is the number of zero amplitudes~coeffi-
cients!. The coefficientscGs , j can be regarded as the mult

plicities of the eigenvalueslGs , j ~for some real positiveq
values, these coefficients can be zero or negative, so tha
interpretation presumes a sufficiently large real positiveq,
followed by analytic continuation to other values ofq).

II. TUBES OF THE SIMPLE CUBIC LATTICE
WITH FREE TRANSVERSE BOUNDARY CONDITIONS

The computations of the transfer matrix and the chroma
polynomials were performed following the methods d
scribed in Sec. III of Ref.@47#. The idea is to construct the
partition function by building the lattice layer by layer. In a
the computations we have chosen the Fortuin-Kasteleyn
resentation of the transfer matrix. Thus, our basis will be
connectivities of the top layer, whose basis elementsvP are
indexed by partitionsP of the single-layer vertex setV0. We
shall abbreviated functionsd(s1 ,s3) asd1,3. Moreover, we
shall also abbreviate partitionsP by writing instead the cor-
responding productvP of d functions: e.g., in place ofP
5$$1,3%,$2,4%,$5%% we shall write simplyP5d1,3d2,4. The
transfer matrix can be expressed as

T5V H ~2.1!

where the matricesH andV are defined as

H5 )
^xx8&PE0

@ I 2Jxx8# ~2.2!

V5 )
xPV0

@2I 1Dx#. ~2.3!

In these formulasE0 is the single-layer edge set, andJx,x8
andDx are, respectively, the ‘‘join’’ and ‘‘detach’’ operator
whose action on the elements of the basisvP is as follows:
1-4
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Jxx8vP5vP•xx8 ~2.4!

DxvP5H vP\x if $x%¹P
qvP if $x%PP,

~2.5!

whereP•xx8 is the partition obtained fromP by amalgam-
ating the blocks containingx andx8 ~if they were not already
in the same block!; andP\x is the partition obtained fromP
by detachingx from its block ~and thus making it what we
term a ‘‘singleton’’!. In Eq. ~2.3! we have written the formu-
las forH andV in the zero-temperature Potts antiferromag
limit; the general expressions can be found in@47#.

Finally, the partition function can be written as

Z~Lx3Ly3Lz ;q!5uT
•H~VH!Lz21

•vid , ~2.6!

where ‘‘id’’ denotes the partition in which each sitexPV0 is
a singleton, anduT is defined by

uT
•vP5quPu. ~2.7!

In the zero-temperature limit the horizontal operatorH is a
projection. This implies that we can work in its image su
space by using the modified transfer matrixT85HVH in
place ofT5VH, and using the basis vectors

wP5H vP ~2.8!

in place ofvP . Note thatwP50 if P contains any pair of
nearest neighbors in the same block. In the following s
sections we will list the basisP5$vP%, although we per-
formed the actual computations with the basis$wP%.

The computation of the limiting curvesB was performed
with either the resultant or the direct-search methods~see
Ref. @47# for details!. The computation of the zeros of th
chromatic polynomials was done using the packageMPSOLVE

designed by Bini and Fiorentino@52,53#, whose performance
is superior to that ofMATHEMATICA for this particular task
@47#.

A. 2FÃ2FÃ„L z…F section of the simple cubic lattice

Before proceeding to our new results, we note the iden

sc„2F32F3~Lz!F…5sq„4P3~Lz!F…. ~2.9!

The left-hand side of this identity is evidently a tube of t
simple cubic lattice with a minimal-size transverse cross s
dd

a

01111
t

-

-

y

c-

tion, viz., a single square; the right-hand side of the iden
is a strip of the square lattice of width 4 squares, and perio
transverse boundary conditions. The chromatic polynom
for the family of graphs on the right-hand side of this ident
were calculated in Sec. VII of@31# and, in the infinite-length
limit, W and B were determined„see Fig. 3~a! of @31#…. In
Ref. @31#, the longitudinal direction was taken asLx , while
we take it to beLz here. In@30–32#, a generating function
formalism was developed and used; for a given strip gra
Gs of length m, the chromatic polynomialP„(Gs)m ,q… is
given as the coefficient ofzm, wherez is the auxiliary expan-
sion variable,

G~Gs ,q,z!5 (
m50

`

P„~Gs!m ,q…zm. ~2.10!

This generating function is a rational function ofq andz. For
the strip considered here, of lengthLz5m edges,

G~Gs ,q,z!5
a01a1z

11b1z1b2z2
. ~2.11!

where

a05q~q21!~q223q13!, ~2.12!

a152q~q21!~q427q3116q2213q15!, ~2.13!

b152q418q3229q2155q246, ~2.14!

b25q6212q5161q42169q31269q22231q185.
~2.15!

~Here we have converted the numerator coefficients fr
@31# to be in accord with the labeling convention of E
~2.10!; in the labeling convention of@31#, the strip with
lengthm11 edges.! The chromatic polynomial can equiva
lently be written as in~2.6!: in the basisP5$1,d1,41d2,3% it
is given by

Z„2F32F3~Lz!F ;q…

5S q~q21!~q223q13!

2q~q21!2 D T

•T~2F32F!Lz21
•S 1

0D .

~2.16!

The transfer matrixT(2F32F) is equal to
T~2F32F!5S 41251q128q228q31q4 2~212114q26q21q3!

2512q 524q1q2 D . ~2.17!
s,

al-
Note that in general, we should have considered an a
tional element in the basis, namely, the partitiond1,4d3,2;
however, its amplitude vanishes identically. This can be e
ily understood by noting that this particular graph~2.9! is
planar andd1,4d3,2 is a crossing partition.
i-

s-

For this family,B consists of two complex-conjugate arc
a self-conjugate arc that crosses the real axis atq.2.3026
and a line segment on this axis extending fromq.2.2534 to
q.2.3517, which latter point is thusqc . It should be noted
also that although this graph is included here as the minim
1-5
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transverse-size member of a family ofLx3Ly3Lz sections
of the simple cubic lattice, it is degenerate in the sense th
is actually planar, in contrast to the others that we shall st
here. There are eight endpoints inB; two of them are given
by the real valuesq.2.3026 andq.2.3517; the other six
end points are the complex-conjugate pairsq.0.7098
62.0427i , q.1.992361.5942i , andq.2.995361.4266i .

B. 3FÃ2FÃ„L z…F section of simple cubic lattice

The section of the simple cubic lattice with the next larg
transverse cross section is the 3F32F3(Lz)F , or equiva-
lently, 2F33F3(Lz)F , family. For this family, the dimen-
sion of the transfer matrix is 13.~In general the transfe
matrix has dimension 15, but two basis elements, nam
d1,5d2,6d3,41d2,4d3,5d1,6 andd1,3,5d2,4,6, can be eliminated as
they have zero amplitudes.! Since the entries in the transfe
matrix are rather long, we relegate them to theMATH-

EMATICA file transfer_sc.m that is available with this
paper in the LASL cond-mat archive. We have computed
chromatic zeros forLz515 and 30, i.e.,n590 and 180 ver-
tices, respectively. These are shown in Fig. 1. This value
Lz is sufficiently large that these zeros give a reasona
accurate indication of the location of the asymptotic limiti
curves comprising the locusB. As is generally true, for the
larger value ofLz , and hencen, the chromatic zeros mov
slightly outward, approaching the limiting curveB from
smaller values ofuqu.

The limiting curveB consists of two complex-conjugat
arcs, a self-conjugate arc that crosses the realq axis at q

FIG. 1. Chromatic zeros for the 3F32F3(Lz)F section of the
simple cubic lattice, for~a! Lz515, i.e., n590 (h), ~b! Lz530,
i.e., n5180 (s).
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.2.8645, and a horizontal real segment fromq.2.8566 to
q.2.8723. This latter value corresponds to the value ofqc

for this family. This information is listed, together with tha
from other lattices, in Table I. There are 16 endpoints: t
are the real valuesq.2.8566 andq.2.8723; the other 14
are the complex-conjugated pairs:q.0.294361.9150i ,
q.1.937162.4040i , q.2.637461.0937i , q.2.8250
61.4087i , q.2.625561.4647i , q.3.241061.2920i , and
q.2.264562.4605i . Finally, there are four T points atq
.2.67061.117i andq.2.68961.500i .

C. 4FÃ2FÃ„L z…F section of simple cubic lattice

The section of the simple cubic lattice with the next larg
transverse cross section is the 4F32F3(Lz)F , or equiva-
lently, 2F34F3(Lz)F family. For this family, the dimension
of the transfer matrix is 156. However, there are 20 ba
elements that correspond to zero amplitudes, so the effec
dimension of the transfer matrix is 136. This transfer mat
T(4F32F), as well as the vectorsv anduid can be found in
the MATHEMATICA file transfer_sc.m . We have com-
puted the chromatic zeros forLz520 and 40, i.e.,n5160
and 320 vertices, respectively. These are shown in Fig.

The limiting curveB consists of eight complex-conjugat
arcs; none of them crosses the real axis, so, strictly speak
there is no value ofqc . However, we can define (qc)eff
'3.1498. This value is larger than the corresponding va
for the family 3F32F3LF qc'2.8723 and larger than th
value for the square latticeqc(sq)53. There are 11 pairs o
complex-conjugate end points:q.0.07361.747i , q.1.582
62.845i , q.1.68462.871i , q.2.37962.503i , q.2.513
61.569i , q.2.66161.816i , q.2.69761.889i , q.3.034
61.367i , q.3.03561.385i , q.3.15060.002i , and q
.3.38361.157i . Finally, there are three pairs of comple

TABLE I. Results for tube graphs of the simple cubic lattic
The table shows the relation between the degree~coordination num-
ber! D of a D-regular family or the effective degreeDeff , andqc , if
a qc exists, for the infinite-length limit of the family. Boundar
conditions are indicated with a subscript F for free, P for period
in a given direction. In columnqc , an asterisk indicates thatB does
not actually cross the real axis, so that, strictly speaking, noqc is
defined, but arcs onB end very close to the real axis, at the pos
tions given. Similar results are listed for the tubes withKm,m cross
sections.

Gs D Deff qc Ref.

sc, 2F32F3`F 4 2.3517 @31#

sc, 3F32F3`F 4.33 2.8723 Here
sc, 4F32F3`F 4.50 3.149860.0021* Here
sc, 2P32P3`F 4 2.3517 @31#

sc, 3P32P3`F 5 3.325560.0184i * Here
sc, 4P32P3`F 5 3.362360.0061i * Here
K2,23`F 4 2.3517 @31#

K3,33`F 5 3.045260.0082i * Here
K4,43`F 6 3.674360.0085i * Here
1-6
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conjugate T points:q.2.38162.404i , q.2.69561.793i ,
andq.2.97261.578i .

III. TUBES OF THE SIMPLE CUBIC LATTICE
WITH TRANSVERSE PERIODIC

BOUNDARY CONDITIONS

The method we have used to compute the chromatic p
nomials and the transfer matrix is the same as in Sec. II.
only difference is that we enlarge the single-layer edge
E0.

A. 2PÃ2PÃ„L z…F section of simple cubic lattice

This family has~trivially ! the same chromatic polynom
als as the family sc(2F32F3(Lz)F . ~This is not true for the
finite-temperature Potts model partition function, or equiv
lently, the Tutte polynomial; however we only deal with th
chromatic polynomial here.! Thus, the transfer matrix an
chromatic polynomials are given, respectively, by Eqs.~2.1!
and ~2.6!.

B. 3PÃ2PÃ„L z…F section of simple cubic lattice

In general, finite-size artifacts are minimized if one us
periodic boundary conditions in as many directions as p
sible. Hence, it is useful to calculateP andB for the same
section of the simple cubic lattice as in the previous sect
but with periodic boundary conditions imposed on the lon
of the two transverse directions. This family is again bip
tite. In this case, the dimension of the transfer matrix is 4

FIG. 2. Chromatic zeros for the 4F32F3(Lz)F section of the
simple cubic lattice, for~a! Lz520, i.e.,n5160 (h), ~b! Lz540,
i.e., n5320 (s).
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In the basis P5$1,d2,41d2,61d1,51d3,51d1,61d3,4,
d1,5d2,61d2,4d3,51d3,4d1,51d3,4d2,61d1,6d3,51d1,6d2,4 ,
d1,6d3,41d1,5d2,41d2,6d3,5%, the transfer matrix can be writ
ten as

T~3P32P!

5S T11 T12 T13 T14

T21 T22 T23 T24

1 2~231q! 1226q1q2 22~241q!

0 22 24~231q! 1527q1q2

D ,

~3.1!

where

T115108921578q11054q22417q31103q4215q51q6,
~3.2!

T1256~22921394q2231q2174q3213q41q5!,
~3.3!

T1356~1102117q151q2211q31q4!, ~3.4!

T1453~1542149q160q2212q31q4!, ~3.5!

T215290171q220q212q3, ~3.6!

T2252032189q171q2213q31q4, ~3.7!

T2352109180q221q212q3, ~3.8!

T245281152q212q21q3. ~3.9!

The vectorsv anduid are given by

v5S ~221q!~211q!q~213114q26q21q3!

6~221q!3~211q!q

6~221q!2~211q!q

3~231q!~221q!~211q!q

D ,

~3.10!

uid5S 1

0

0

0

D . ~3.11!

We remark that in this case the most general basis cont
an additional partition:d1,5d2,6d3,41d2,4d3,5d1,6. This one
can be dropped, as it corresponds to a vanishing amplitu

We have computed the chromatic zeros forLz515 and
30, i.e., n590 and 180, respectively. These are shown
Fig. 3. The limiting curveB contains three pairs of self
conjugate arcs. Although the arcs do not cross the real a
so that, strictly speaking, noqc is defined, (qc)eff.3.33,
which is larger than the valueqc53 for the square lattice-
.The locus B has 12 endpoints:q.0.506162.6413i ,
1-7



e
pl

th

s
-

cu
is
fo
i-

ch

we
the
this
or

ease
2D

e

the
ses
en

at go
d-

he
ross
uses
ns-
-
i-

ci
n-

erse
cus
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q.2.130162.4407i , q.3.025162.5249i , q.3.0412
61.2643i , q.2.932861.1238i , andq.3.325560.01839i .

C. 4PÃ2PÃ„L z…F section of simple cubic lattice

In this case we have 56 basis elements. However, th
are 11 trivial basis element that lead to a vanishing am
tude. The transfer matrix and the vectorsv anduid are listed
in the MATHEMATICA file transfer_sc.m . Among the
other 45 basis elements, we have numerical indications
there are 19 additional vanishing amplitudes.

The limiting curve B ~see Fig. 4! contains eight self-
conjugate arcs. As in the 4P32P3`F case, this locus doe
not actually cross the positive realq axis, but again has end
points that lie very close to this axis, and we obtain (qc)eff
.3.36. As expected, this is larger than the value (qc)eff
.3.33 that we found for the tube 3P32P3`F . There are
nine pairs of complex-conjugate end points:q.20.095
62.700i , q.1.80363.031i , q.2.17663.196i , q.2.841
61.954i , q.2.91062.080i , q.3.26361.333i , q.3.279
61.377i , q.3.36260.006i , andq.3.89261.542i . Finally,
there is one pair of complex-conjugate T points:q.3.204
61.665i .

Another property that was observed in our earlier cal
lations of chromatic polynomials for strips of 2D lattices
that, for a given type of transverse boundary conditions,
infinite-length strips with free longitudinal boundary cond
tions, as the width increases, the number of arcs onB in-
creases and the end points of these arcs move in su

FIG. 3. Chromatic zeros for the 2P33P3(Lz)F section of the
simple cubic lattice, for~a! Lz515, i.e., n590 (h), ~b! Lz530,
i.e., n5180 (s).
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manner as to reduce the gaps between the arcs. Here
observe the same qualitative behavior as the area of
transverse cross section of the tube section increases. If
trend continues for progressively larger transverse widths
cross sectional areas, then the number of arcs could incr
without bound as one approaches the respective infinite
or 3D lattices. Now in the two cases where the lociB have
been calculated exactly for regular lattices, namely, thed
51 lattice ~with periodic boundary conditions; for fre
boundary conditions,B5B) and the triangular lattice~de-
fined as the limitL→` of LP3`F strips@23#!, this locus has
no prongs or endpoints. Thus, one could imagine that as
width or cross sectional area of the strips or tubes increa
to infinity, the endpoints of arcs join so that the gaps betwe
these arcs disappear, and prongs either have lengths th
to zero or have end points that join to form closed boun
aries. We also observe that, for a given width or, for t
present families of tube sections, for a given transverse c
sectional area, there tend to be fewer arcs when one
periodic rather than free boundary conditions for the tra
verse direction~s!. This is in accord with the fact that calcu
lations for strips with periodic longitudinal boundary cond
tions @11,36,40,46,49,45# found no prongs~or line segments!
on the respective lociB, i.e., in all cases studied, these lo
did not contain endpoints. Finally, our calculations are co
sistent with the expectation that as the area of the transv
cross section goes to infinity, the outer envelope of the lo
B approaches a limit, which crosses the real axis atq50,
qc(sc), and other point~s! between these two.

FIG. 4. Chromatic zeros for the 2P34P3(Lz)F section of the
simple cubic lattice, for~a! Lz520, i.e.,n5160 (h), ~b! Lz540,
i.e., n5320 (s).
1-8
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IV. FURTHER REMARKS ON THE STRUCTURE OF B
In the introductory section, we discussed some differen

in the locusB that depend on whether one uses periodic
free longitudinal boundary conditions. Here we include so
further remarks relevant to our present results. It has b
established that the structure ofB inside its outer envelope
and, in particular, the question of whether and where
crosses the positive real axis betweenq50 and q
5qc($G%) are dependent upon the boundary conditio
used. For example, exact calculations forLF3`P and LP
3`P strips of the triangular lattice show that the respect
loci B cross the real axis atq52 @36,45,49#, corresponding
to the fact that the Ising antiferromagnet has a~frustrated!
T50 critical point on these strips; however the lociB ob-
tained in @23,31# for LP3`F strips or in @30# for LF3`F
strips of the triangular lattice do not, in general, cross the
axis atq52, nor is this crossing obtained for the infinite
width limit of the cylindrical strips calculated in@23#. Simi-
larly, for LF3`P and LP3`P strips of the square lattice i
was found thatB passes throughq50, q52, and a maximal
value,q5qc($G%) @11,36,40,46#. In contrast, for the corre
sponding strips of the square lattice with free longitudin
boundary conditions, it has been found thatB does not con-
tain q50 or, in general,q52, and while the arc end point
nearest to the origin move toward this point as the wi
increases~leading to the inference that for infinite width,B
would pass throughq50), there is no analogous tendency
arcs onB to elongate towardq52 @30,31,47,50#. There is
also no tendency for the arcs on the lociB for our tube
sections of the simple cubic lattice with free longitudin
boundary conditions to move towardq52 as the cross sec
tional area increases.

A second point concerns the positions of the leftmost a
We find from the exact calculations reported here that for
infinite-length tube sections of the simple cubic lattice of t
form (Lx)P3(Ly)P3`F with sufficiently large transverse
cross section, namelyLx54, Ly52, B contains support in
theRe(q),0 half plane. This suggests that for this family
tube sections of the simple cubic lattice with periodic tra
verse boundary conditions, as the transverse areaLxLy→`,
the complex-conjugate curves onB could approach the ori
gin from theRe(q),0 half plane, as happens for the lim
L→` of LP3`F strips of the triangular lattice@23# and suf-
ficiently wide strips of the square lattice of the formLF
3`F @30,47#, LP3`F @46,47,50#, andLF3`P @36,38,46#.

V. BEHAVIOR OF qc FOR Ed WITH LARGE d

For the d-dimensional Cartesian latticeEd, Mattis sug-
gested the ansatz@24#

W~En,q!.11
~q22!d

~q21!d21
. ~5.1!

This agrees with the general resultsW($C%,q)5q21 for d
51, and, for the square latticeE2 with q53 yields the esti-
mateW(sq,q53)53/2, which is within 4% of the known
result W(E2,q53)5(4/3)3/251.5396 . . . @16#. Mattis ad-
01111
s
r
e
en

it

s

e

al

l

h

l

s.
e

-

dressed the question ofdc(q), i.e., the lower critical dimen-
sionality of theq-state Potts antiferromagnet, below which
is disordered forT>0. An equation yieldingdc as a function
of q can also be solved to yieldqc as a function ofd, so
dc(q) andqc(d) constitute equivalent information about th
system. Mattis argued thatdc(q) could be estimated by not
ing thatW is a measure of disorder, and if it is significant
greater than 1, then the system would be sufficiently dis
dered that one would not expect there to be a phase trans
at T>0. Taking the criterion thatW,2 as the demarcation
value for which a zero-temperature phase transition co
occur, this yields the result

dc~q!5
ln~q21!

lnS ~q21!

~q22! D
. ~5.2!

As noted, this may equivalently be regarded as an equa
for qc as a function ofd and ford53, this ansatz gives

qc~d53!.4.15. ~5.3!

Our exact resultsW and qc for tube sections of the simple
cubic are consistent with this estimate from the ansatz~5.1!.

It is also of interest to ask what the behavior ofqc is for
large d on Cartesian lattices. The ansatz~5.1! yields the
asymptotic behavior

qc;
d

ln d
for d→`. ~5.4!

This is in agreement with the upper bound~1.12!

qc<4d ~5.5!

and evidently is a smaller and smaller fraction of this upp
bound asd gets large, with

Rqc
;

1

4 lnd
for d→`. ~5.6!

VI. FAMILY „Km,m…
L z

It is also useful to calculateB and study the dependenc
of qc on vertex degree for infinite-length limits of othe
families of tube graphs. We report calculations here fo
family of tube graphs whose transverse cross section is
complete bipartite graphKm,m . The graphKm,m is D-regular
graph with D5m. We construct our tubes with theKm,m
transverse cross section connected lengthwiseLz times, so
that each vertex of oneKm,m subgraph is connected ‘‘verti
cally’’ to the corresponding vertex of the nextKm,m . This
recursive family of graphs is denoted as (Km,m)Lz. The value
of Deff is for this family

Deff„~Km,m!Lz;FBCz ;Lz→`…5m12. ~6.1!

The computational method is the same as in the simple c
families: the transfer matrix and the partition function a
1-9



is

r

ent
in
e.

ses

xis
or
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computed using the same formulas~2.1!/~2.6!. The only dif-
ference is the single-layer edge setE0.

A. Family „K2,2…
L z

The family (K2,2)
Lz is trivially equivalent to the family

sq(4P3LF), so by Eq.~2.9! it is also equivalent to the family
sc„2F32F3(Lz)F…. The transfer matrix, written in the bas
P5$1,d1,21d3,4%, takes the same form as Eq.~2.17!; and the
partition function is equivalent to Eq.~2.16!.

B. Family „K3,3…
L z

The transfer matrix for the family (K3,3)
Lz has dimension

5. In the basisP5$1,d1,21d1,31d2,31d4,51d4,61d5,6,d1,2,3
1d4,5,6,d1,2d4,51d1,2d4,61d1,2d5,61d1,3d4,51d1,3d4,61d1,3d5,6
1d2,3d4,51d2,3d4,61d2,3d5,6, d1,2,3d4,51d1,2,3d4,61d1,2,3d5,6
1d4,5,6d1,21d4,5,6d1,31d4,5,6d2,3%, we can write the transfe
matrix as

T~K33!5S T11 T12 T13 T14 T15

T21 T22 T23 T24 T25

T31 T32 T33 T34 T35

1 2~231q! 0 T44 2~221q!

0 1 0 23 22q

D ,

~6.2!

where

T115123421747q11137q22437q31105q4215q51q6,
~6.3!

T1256~22521337q2198q2165q3212q41q5!,
~6.4!

T1352~36256q133q229q31q4!, ~6.5!

T1459~89294q143q2210q31q4!, ~6.6!

T1556~225124q28q21q3!, ~6.7!

T2152113191q227q213q3, ~6.8!

T2251742153q154q2210q31q4, ~6.9!

T235210113q26q21q3, ~6.10!

T2453~240128q28q21q3!, ~6.11!

T25529221q14q2, ~6.12!

T31555227q13q2, ~6.13!

T32523~29217q13q2!, ~6.14!

T3359212q16q22q3, ~6.15!

T345218~231q!, ~6.16!

T35523~725q1q2!, ~6.17!
01111
T4451225q1q2, ~6.18!

Finally,

v5S ~211q!q~31247q128q228q31q4!

6~211q!q~27110q25q21q3!

2~211q!3q

9~211q!q~323q1q2!

6~211q!2q

D ,

~6.19!

uid5S 1

0

0

0

0

D . ~6.20!

We remark that in this case there is an additional elem
of the basisd1,2,3d4,5,6 that should be taken into account
general. However, it corresponds to a vanishing amplitud

Chromatic zeros for (K3,3)
Lz with Lz515 andLz530 are

shown in Fig. 5, as well as the limiting curveB. The limiting
curveB contains six connected pieces. None of them cros
the real axis. Thus, strictly speaking, there is noqc defined.
However, by extrapolating the closest points to the real a
we getqc.3.045, which is slightly greater than the value f
the square latticeqc53.

FIG. 5. Chromatic zeros for the (K3,3)
m graph for ~a! m5Lz

515, i.e.,n590 (h), ~b! m5Lz530, i.e.n5180 (s).
1-10
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There are 14 end points:q.0.819762.9764i , q
.1.976162.5559i , q.2.819061.5587i , q.2.9364
62.5742i , q.3.622062.0051i , q.3.028361.3476i , and
q.3.045260.008246i . There are two complex-conjugate
points atq.2.94961.870i .

C. Family „K4,4…
L z

In this case the transfer matrix has 15 elements. Howe
three of them correspond to null amplitudes, so we have
effective 12-dimensional transfer matrix. This matrix
listed in theMATHEMATICA file transfer_Knn_tube.m
that is available with this paper in the LASL cond-mat a
chive.

There are eight connected pieces~see Fig. 6!, and none of
them crosses the real axis. The closest points to that axis
the complex-conjugated pairq'3.674360.0085i . There are
ten endpoints~that were computed using the resulta
method!: q'1.008463.7740i , q'1.910463.4341i , q
'2.945763.2436i , q'3.038562.8658i , q'3.5456
61.3512i , q'3.600663.2332i , q'3.626061.4516i , q
'3.674360.0085i , q'3.785762.3839i , and q'3.8460
62.7980i . There are four T points atq'3.07062.904i , and
q'3.56763.158i .

VII. CONCLUSIONS

In this paper we have reported exact solutions for
zero-temperature partition function of theq-state Potts anti-
ferromagnet on tubes of the simple cubic lattice with vario
transverse cross sections and boundary conditions and
arbitrarily great length. We have used these to calculate
the infinite-length limit, the resultant ground-state dege
eracy per siteW and the singular locusB which is the con-
tinuous accumulation set of the chromatic zeros. In parti
lar, we have calculated the value ofqc or (qc)eff for these
infinite-length tubes. Our results show quantitatively ho
this quantity increases as the effective coordination num
for a given family of graphs increases and are a step tow
determiningqc is for the infinite simple cubic lattice. We
have also presented similar calculations for another inter
d
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ing family of tube graphs whose transverse cross sectio
formed from the complete bipartite graphKm,m .
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