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Exact T=0 partition functions for Potts antiferromagnets on sections of the simple cubic lattice
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We present exact solutions for the zero-temperature partition function af-stete Potts antiferromagnet
(equivalently, the chromatic polynomiR)) on tube sections of the simple cubic lattice of fixed transverse size
LyxXL, and arbitrarily great length.,, for sizesL,XL,=2X3 and 2<4 and boundary conditionga)
(FBC,FBC,,FBC,)) and(b) (PBC,,FBC,,FBC,), where FBC(PBC) denote fregperiodig boundary condi-
tions. In the limit of infinite lengthL,— %, we calculate the resultant ground-state degeneracy pel\site
(=exponent of the ground-state entrpp§eneralizingy from 7, to C, we determine the analytic structure of
W and the related singular locus which is the continuous accumulation set of zeros of the chromatic
polynomial. For the.,— limit of a given family of lattice sectiona)V is analytic for realy down to a value
g.- We determine the values gf for the lattice sections considered and address the question of the value of
g. for a d-dimensional Cartesian lattice. Analogous results are presented for a tube of arbitrarily great length
whose transverse cross section is formed from the complete bipartite I§raph
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l. INTRODUCTION wheren=|V/| is the number of vertices d& and we denote

i . - the formal infinite-length limit of strip graphs of typ® as
The g-state Potts antiferromagnEt,2] exhibits nonzero (Gl=lim, .. G. At certain special pointsj, [typically q.

g.round—state entropﬁ0>0 (yvlthout frustration for suffi- =0,1, ... x(G)], one has the noncommutativity of limits
ciently largeq on a given latticeA or, more generally, on a 11

1 ’ ]
graphG. This is equivalent to a ground-state degeneracy pe[r
siteW>1, sinceS;= kg In W. Such nonzero ground-state en-
tropy is important as an exception to the third law of ther-
modynamicg 3,4]. One physical example is provided by ice,

for which the residual molar entropy is$=0.82  anq hence it is necessary to specify the order of the limits in
+0.05 cal/(Kmol), i.e., S/R=0.41:0.03, where R the definition ofW({G},qs). DenotingWg,, and W, as the
=Nay00.Kg [5]- Indeed, residual entropy at low temperaturesfnctions defined by the different order of limits on the left
has been observed in a number of molecular crystals, includy,q right-hand sides of E€L.3), we takeW=W,,, here; this

ing nitrous oxide, NO and FCIQXa comprehensive review is pas the advantage of removing certain isolated discontinui-
given in Ref.[6]). In these physical examples, the entropyiies that are present iW.,. Using the expression for
occurs without frustration, i.e., the configurational energyp(G,q), one can generalizg from 7, to C. The zeros of

can be minimized, just as in the Potts antiferromagnet forp(G’q) in the complexq plane are called chromatic zeros; a

sufficiently largeq. subset of these may form an accumulation set inrthex

There is a close connection with graph theory here, SinCgit - qenoted 3, which is the continuous locus of points

the ;ero—temperature partition function of the above'whereW({G},q) is nonanalytic. For some families of graphs
mentioned g-state Potts antiferromagnet on a gragh

1 B may be null, andW may also be nonanalytic at certain
=(V,E) satisfies discrete points. The maximal region in the compteglane
to which one can analytically continue the function
W({G},q) from physical values where there is nonzero
whereG is defined by its set of vertice# and edges and ~ 9round-state entropy is denot®q. The ground-state degen-
P(G,q) is the chromatic polynomial expressing the numberracy Per siteV({G}) is an analytic function of rea from
large values down to the valug., which is the maximal

of ways of coloring the vertices @ with g colors such that _ C * ;
no two adjacent vertices have the same cdfor reviews, value whereB intersects thgpositive real axis. For some

see[7-10). The minimum number of colors necessary for families of graphs3 does not cross or intersect the repl
such a coloring ofG is called the chromatic numbear(G). ~ aXIs;In these cases, 1R is defined. However, even in cases

lim limP(G,q)*# lim lim P(G,q)'" (1.3

q—»qs n—o n—oe q—»qs

Z(G,q,T=0)ppr=P(G,q), (1.1

Thus where no such intersection occurdi often includes
complex-conjugate arcs with end points close to the positive
W({G},q)= lim P(G,q)'", (1.2 real axis, and hence, in these cases, it can be useful to define
n—oo a quantity €.) e €qual to the real part of the end points. We

shall use this definition here.
In this work we present exact solutions for chromatic
*Email address: jesus@melkweg.unizar.es polynomials P(G,q) for sections of the simple cubitsc
"Email address: robert.shrock@sunysb.edu lattice with fixed transverse sidg XL, and arbitrarily great
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lengthL,, for cross sectionk, X L,=3Xx2 and 4<2. These point here is that as the area of the transverse cross section of
calculations are carried out for the case$a) the tube increases to infinity, the corresponding sequence of
(FBC,,FBC,,FBC,)  (rectangular  solid and (b) exactq. or (g.)es Values is expected to converge to a limit.
(PBC,,FBC,,FBC,) (homeomorphic to an annular cylindri- For the tube sections considered here, which have free lon-
cal solid, where FBG and PBG denote free and periodic gitudinal boundary conditions, this limit is a lower bound
boundary conditions in théth direction, respectively. We for the trueq. of the infinite simple cubic lattice. The reason
shall use the notationL{)r and (;)p to denote free and that one can only say that it is a lower bound is that for
periodic boundary conditions in thi¢h direction, so that, for these families with free longitudinal boundary conditions
example, the X 2XL, sections of the simple cubic lattice the respective limiting curvg exhibits a complex-conjugate
with the boundary conditions of typ@) and(b) are denoted pair of prongs that protrude to the right. It is possible that,
3eX2eX (L) and 33X 2eX(L,)g, respectively. For each as the area of the transverse cross section goes to infinity,
family of graphs, taking the infinite-length limit,—o, we  the endpoints of these prongs will extend over and meet on
calculateW({G},q), B, and hencey. the real axis, thereby defining a poig{ that could lie to

We also present corresponding results for a tube of arbithe right of the limit of theq, points for each of the
trarily great length whose transverse cross section is formetiibes with finite transverse cross section. In this case,
from the complete bipartite grapky,m, for the casesn  lmy | . dc(sc, L)eex(Ly)ecyXF) is not equal to,
=2 and 3. Here the complete graph, is defined as the but instead less than, the valgg(sc) for the infinite simple
graph consisting oh vertices such that each vertex is con- cubic lattice. Indeed, for finite-width, infinite-length strips of
nected by edgegbonds to every other vertex, and the com- the triangular lattice with free longitudinét) boundary con-
plete bipartite graptKp, , is defined as the joirK,,+K,,  ditions and periodic transversey)( boundary conditions,
where the join of two graph& andH, denotedG +H is the |imLyH3o de((Ly)px*p)=3.8196 ... while gq,=4 for the
graph obtained by joining each of the vertices3o each of  jnfinite triangular lattice[23]. This occurs because of the
the vertices OH.' Although th_e cc_)mplet_e blparUte graPhS aré ahove-mentioned phenomenon in which the endpoints of the
not regular lattices as studied in statistical mechanics, theXomplex-conjugate pair of prongs protruding to the right on

are useful since they allow us to obtain exact results for cases limiting curve3 move inward toward the real axis and

of high effective coordination number. asL,—x, finally touch each other, thereby defining the true

There are several motivations for this work. We have — about 5% ter than the ab imit-a8.82. Th
mentioned the basic importance of nonzero ground-state effle~ * @pPout o7 greater than the above fimit-as.cs. 1he

tropy in statistical mechanics and physical examples of thi®'esence of these types of prongs protruding to the right on
phenomenon. From the point of view of rigorous statisticalN® limiting curves was also observed for a variety of
mechanics, exact analytic solutions are always valuable sindgfinite-length, finite-width two-dimensional2D) lattice
they complement results from approximate series expansioriips with free longitudinal boundary conditior®r both
and numerical methods. We have defined the pgirabove  free and periodic transverse boundary conditi¢86,31,45—
in terms of the functioW({G},q). This point has another 47,50. Calculations forLpX = (i.e., cylindrica) strips of
important physical significance: for the—o limit of a  the square lattice have been carried oUtdh,46,47,5Qwith
given family of graphs{G}, the g-state Potts antiferromag- widths L extending up to 1350], with qc(sq, 13X )
net has no finite-temperature phase transition but is disor=2.916. This value is within about 3% of the value for the
dered for allT=0 if g>q.({G}), and has a zero-temperature infinite square latticeg.(sq)=3. As the width increases, the
critical point for q=q.({G}) [12]. For the Potts model on end points of the prongs do move in toward the real axis.
the (infinite) square lattice, via a mapping to a vertex model,These calculations fdrpX o strips of the square lattice are
it has been concluded thgt=3 [15]. However, the value of consistent with either of the two possibilities, that
. is not known for any lattice of dimension three or higher.lim _,.. g.(sq.LpX ) is equal to, or slightly less than,
One of the main motivations for our study is the insight thatq.(sq).
one gains concerning the dependencegobn the coordina- It is interesting that the exact calculations of the singular
tion numberA =2d of a d-dimensional Cartesian lattidé’  loci B for infinite-length, finite-width strips of various lat-
for the cased = 3. Furthermore, although infinite-length sec- tices with periodic longitudinal boundary conditiohS1]
tions of higher-dimensional lattices with fixed finite (and either free or periodic transverse boundary conditions
(d—1)-dimensional volume transverse to the direction inyielded loci without such complex-conjugate prorigs line
which the length goes to infinity are quasi-one-dimensionakegments on the real axi$11,36,46,40,49,45 For these
systems and hendéor finite-range spin-spin interactiondo  families of strips it was found thaB always crossed the
not have finite-temperature phase transitions, their zeropositive real axis agj=0 and at a maximal point, sq. is
temperature critical points are of interest. Finally, in additionalways defined; furthermoré,Xx o, the value ofq. is a
to the physics motivations, the present results are of intereshonotonically nondecreasing function of the width. Fgr
in mathematical graph theory. Some related earlier work is in< co, strips, althoughy, is not a nondecreasing function of
Refs.[13-50. the width, it is, for a given width, closer to the value for the
Our exact calculations aj. for the infinite-length limits  infinite 2D lattice if one uses periodic, rather than free trans-
of tube sections of the simple cubic lattice yield informationverse boundary conditions, as one would expect since the
relevant to estimates af;, for the infinite cubic lattice. The former minimize finite-size effects.
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Some definitions from graph theory will be useful here. x(sC(L)eX (Ly)ex (L)p)=2, (1.10
The degree of a vertex in a gragh= (V,E) is the number of
edges to which it is attached. A grajgh defined to beA i.e., these graphs are bipartite. For the sections of the simple

regular if each of its vertices has the same deghe& hisis,  cubic lattice with periodic boundary conditions in one of the
in particular, true of an infinite regular lattice, where this transverse direction, taking this to be theirection with no
degree is the coordination number. Even if some verticetoss of generality,
have different degrees from others, one can define an effec-
tive coordination number, . . . 2 if Ly iseven

2lE] x(sc(Ly)pX( y)FX( 2)F) 3 if L, isodd.

A= liMm - (1.4 (1.1

V|’
Vi—= | - o -

For an infinite regular lattice having coordination number
For example, for a strip of the square lattice of size of thea rigorous upper bound o, was derived i 13] using the
type (Ly)eX(Ly)g, in the limit in which the length_,— o Dobrushin theorem:

with fixed finite width Ly oA 112
gcs<2A. .

Aei(SA(LIRX (Ly)r; Ly ) =4 . (1.9  Aside from the general property that, for cases where there is
Y a(q, this point satisfieg;=2, we are not aware of a pub-
For the same strip, but with periodic transverse boundaryished lower bound o .

conditions, |f|_y23 to avoid double edgesl we have We have noted that in the infinite—length limit of given
family of lattice strip graphsi3 does not necessarily intersect
Aer(sA(L )X (Ly)p;Ly—0)=4. (1.6)  orcross the red axis, and if there is no such crossing, then

there is nog. . It has been found that for a graph consisting
For the L)X (Ly)eX (L,)r section of the simple cubic lat- of a strip of a regular lattice, a sufficient condition 8rto
tice with free boundary conditions in all three directions, thecross the(positive) real q axis is that there be periodic
interior vertices have degree 6, the vertices on the surfacgoundary conditions in the longitudinal direction, i.e., the
away from the corners have degree 4, and the corner verticefrection in which the length goes to infinity @s—o [11—
have degree 3. For the minimal casex2gX (L,)g, there  41].
are no interior vertices in the 3D sense, so that An interesting question is how, depends on the lattice
coordination number, equivalent to the vertex degree for an
infinite lattice. For families ofL, XL, lattice strip graphs
with periodic longitudinal [,) boundary conditions, whose
L,—oe limits are guaranteed to haveyg, it is found that the
value ofq, is a nondecreasing function of the effective ver-

Agii(SC, X 2pX (L) g L, —)=4. 1.7

For the next casel()rX2gX(L,)g with L,=3 there are
also no interior vertices in the 3D sense; in this case

Aei(SC{Ly)pX 26X (L) g FBC, ,FBC, ,FBC, ;L ,—) tex degreelﬁeﬁ. '_I'hus, for the family of cyclic strips_ gf the
square lattice with free transverse boundary conditions, be-
2 sides the X~ case withA=2 andg.=2, one finds the
=S (1.8 following results: (i) 2¢X (A =3) yieldsq.=2 [11], (i)

3 X0 (Ag=10/3) vyields q.~2.3365 [36], (i) 3¢
For theL ,—< limit of the L, XL, XL, section withL,=3, Xoop(Ag=T712) yields q,=2.4928[46]. When one makes
L,=3, we have both the longitudinal and transverse boundary conditions pe-
riodic, the vertex degree is fixed. In this casg,does not
(LytLy) necessarily increase with increasing width. For example,
Lyly - for strips of the square lattice with toroidal boundary condi-
(1.9  tions and henceA=4, the 3 X strip yieldsq,=3 [40]
while the 4, X strips yields the smaller valug.,=2.78
We shall also use the corresponding formulas when periodig49].
rather than free boundary conditions are imposed in one of When one considers strips without periodic longitudinal
the transverse directions. Of course, in the usual thermodyboundary conditions, there may or may not be.a We have
namic limit of the Cartesian latticéi, with Li—, i  found that for strips with free transverse and longitudinal
=1,...dandlim __.L;/L; equal to a finite nonzero con- poundary conditionsg, or (qc)es, Where the latter can be
stant, the effective degree .4(E%)=2d independent of defined, is a monotonically increasing function lof, and
boundary conditions. In this case, although free boundargince in these families of lattice stripAy is a monotoni-
conditions in one or more directions entail vertices of lowercally increasing function of  , this means thatd(;) r; is also
degree than @, these vertices occupy a vanishing fraction ofa monotonically increasing function df.¢. Thus, for %
the total vertices in the thermodynamic limit. Concerning thex oo with Agg=2 and 2 Xoop with Ag4=3, B=CJ and
chromatic number, for the sections of 3D lattices consideredhere is no {)es, While 3 X oo with A 4= 10/3 yieldsq,
here, we have =2 [30], 4gX o with A4=7/2 yields q.=2.3014[30],

Agi(sc(Ly) X (I—y)F>< (Logp; Lyo®)=6-2
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5p X op with A= 3.60 yieldsq,=2.428[46,47], etc. up to Jc
8 X o with Ag=3.75, which yields arc endpoints at ch_ﬂ' (1.13
=2.6603+0.0013 and hence d;) .= 2.6603[47].

In contrast, for strips with free longitudinal and periodic Evidently,R, =0.5 for the infinite-length limit of the circuit
transverse boundary conditions, is fixed, e.g., equal to 4 graph andR, =0.375 for the infinite square lattice. Simi-
for strips of the square lattice. Insofar as one expegter  larly, for other exactly known cases, the actual valugois
(0c)err to depend o\ ¢, it is not clear,a priori, how these considerably less than the rigorous upper bo(hd?2. This
quantities should behave as functions lgf. Indeed, one suggests that it may be possible to improve the upper bound
finds thatq, or (gc)es have no monotonic dependence on (1.12.

Ly. For example, for 38X, B={, 4pXoop yields g A generic form for chromatic polynomials for a strip
=2.3517[31], 5pX e yields q,=2.6917[46,47], but 65 graph of typeG, or, more generally, a recursive family of
Xoop yields q.~2.6132[46,47]. For 7pX%r, B has arc 9graphs composed afirepetitions of a basic subgraph[&2]
endpoints near the real axis at=2.75150.0025%, so
(dc)er=2.7515[47]. For the casesl(;))pX* up toL=11, it
is found empirically thatg, or (g.)ef IS monotonically in-
creasing separately for the evep-and oddk, sequences )
[50]. wherecGS,j(q) and theNGSm terms(elgenvalue)s)\GS,j(q)

Sinceq, has thermodynamic significance as the valug of depend on the type of strip grag@y including the boundary
above which the Potts antiferromagnet has no finiteconditions but are independent af. Here, Ny<dim(T),
temperature phase transition and is disordered ev@r-4&,  Where dim{T) is the dimension of the transfer matrix in the
the value ofg, for a lattice with dimensionalit/=2 should ~ Fortuin-Kasteleyn representation, and the differenidg,
be independent of the boundary conditions used to take thg dim(T) —N,, is the number of zero amplitudesoeffi- -
thermodynamic limit.(Strictly speaking, this is not true for Cients. The coefficientss_; can be regarded as the multi-
d=1, since nog, is defined for the infinite-length limit of plicities of the eigenvalueag_; (for some real positivey
the line graph, while.= 2 for the infinite-length limit of the  values, these coefficients can be zero or negative, so that this
circuit graph, but this may be considered to be an exceptiointerpretation presumes a sufficiently large real positive
due to the special nature of this grapkor the infinite 2D  followed by analytic continuation to other values @f.
lattices wherey is known exactly, it is also a monotonically
increasing function of the lattice coordination number. Spe- Il. TUBES OF THE SIMPLE CUBIC LATTICE
cifically, as noted above, on the square lattide=(4), one WITH FREE TRANSVERSE BOUNDARY CONDITIONS
hasq.=3 [16]. For the kagoméattice, again withA =4, one

NG, .\

P(Gs,m,q)= le Co, j(Mhe, (@], (114

' . . . The computations of the transfer matrix and the chromatic

findsqc=3 [17], and on the triangular lattice with=6, one polynomials were performed following the methods de-

hasqc=4 [23]. , _ , scribed in Sec. Ill of Ref[47]. The idea is to construct the
These exact results are all consistent with the inferencgaition function by building the lattice layer by layer. In all

that the value ofj. increases as a function of the coordina- the computations we have chosen the Fortuin-Kasteleyn rep-

tion number for the thermodynamic limit of a regular lattice resentation of the transfer matrix. Thus, our basis will be the

or, more generally, for infinite-length strips or tubes of regu-connectivities of the top layer, whose basis elementsare

lar lattices with prescribed boundary conditions in the transindexed by partition$ of the single-layer vertex sat®. We

verse directions. A plausibility argument for this is as fol- sha|| abbreviate functionss(o; ,073) asé; 3. Moreover, we

lows. Forq>qc, the zero-temperature Potts antiferromagnetshall also abbreviate partitiond by writing instead the cor-

has nonzero ground-state entropy per sie;kgINW>0,  responding product, of & functions: e.g., in place of

i.e., ground-state degeneracy per sie-1. This entropy =1 3 {24} {5}} we shall write simplyP=5; 35,4. The

reflects the fact that the number of ways of carrying out &ransfer matrix can be expressed as o

proper coloring of the lattice or lattice strip increases expo-

nentially with the number of vertices. Roughly speaking, the T=VH (2.9

constraint that no two adjacent vertices can be assigned the ) ]

same color is more restrictive the greater the number ofvhere the matricesl andV are defined as

neighboring vertices there are, i.e., the greatgyis. There-

fore, as one increases, for a fixedq, W decreases. This is H= [I [1-3,4] (2.2

borne out by exact and numerical calculationsaMffor 2D (xx"y e EO

lattices, see, e.g., Fig. 5 ¢.1] or Fig. 6 of [29]). In the

context ofd-dimensional Cartesian lattices, this means that

g. should increase as a function df Such a monotonicity V_Xgo [=1+Dy. 23
relation is valuable to have since the value qf is not
known exactly for lattices with dimensiath=3. In these formulagE® is the single-layer edge set, add,.

It is useful to define a ratio of the actual valueqpfto the  andD, are, respectively, the “join” and “detach” operators
upper bound in Eq(1.12, namely, whose action on the elements of the basids as follows:
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Iy Vp=Vpuyyr (2.9 tion, viz., a single square; the right-hand side of the identity
is a strip of the square lattice of width 4 squares, and periodic
Vpy If {X}&P transverse boundary conditions. The chromatic polynomials
Dyvp= qvp if {xleP (2.5  for the family of graphs on the right-hand side of this identity

were calculated in Sec. VII dB1] and, in the infinite-length
wherePexx’ is the partition obtained fror® by amalgam- limit, W and 5 were determinedsee Fig. &) of [31]). In
ating the blocks containingandx’ (if they were not already ~Ref.[31], the longitudinal direction was taken &g, while
in the same block andP\x is the partition obtained frorfp ~ We take it to bel, here. In[30-32, a generating function
by detachingx from its block (and thus making it what we formalism was developed and used; for a given strip graph
term a “singleton”). In Eq. (2.3 we have written the formu- Gs Of length m, the chromatic polynomiaP((Gs)m,q) is
las forH andV in the zero-temperature Potts antiferromagnetdiven as the coefficient of”, wherez is the auxiliary expan-
limit; the general expressions can be found4]. sion variable,

Finally, the partition function can be written as

Z(LyxXLyXL,;q)=u"-H(VH)"= vy, (2.6 1H(GS’q’Z):mE:o P(Gs)m. )" (210

where “id” denotes the partition in which each site Vis  This generating function is a rational functionegéndz For

a singleton, andi” is defined by the strip considered here, of lendth=m edges,
UT'sz qlpl (27) ot a;z
I(Gs,q2)=— . (2.11)

In the zero-temperature limit the horizontal operatbis a 1+byz+byz
projection. This implies that we can work in its image sub—Where
space by using the modified transfer matfix=HVH in
place of T=VH, and using the basis vectors ao=0q(q—1)(g?>—3q+3), (2.12

wp=Hvp @8 a;=—q(q—1)(q*~ 70>+ 1642~ 13q+5), (2.13
in place ofvy. Note thatwp,=0 if P contains any pair of b, = —ag*+803— 2902+ 550 — 46 21
nearest neighbors in the same block. In the following sub- ! d g % > ' (2.19
sections we will list the basi®={vp}, although we per- b,=q8— 1295+ 6194 — 1693+ 2692 — 231q+ 85.
formed the actual computations with the balsis}. (2.15

The computation of the limiting curvel8 was performed
with either the resultant or the direct-search methste (Here we have converted the numerator coefficients from
Ref. [47] for detail9. The computation of the zeros of the [31] to be in accord with the labeling convention of Eq.
chromatic polynomials was done using the packagsoLve ~ (2.10; in the labeling convention of31], the strip with
designed by Bini and Fiorentin®2,53, whose performance lengthm+1 edges. The chromatic polynomial can equiva-
is superior to that oMATHEMATICA for this particular task lently be written as in2.6): in the basisP={1,5; 4+ J, 3} it

[47]. is given by
A. 2:X2:X(L,)¢ section of the simple cubic lattice Z(2eX2eX(LY)E;q)
Before proceeding to our new results, we note the identity a(q—1)(g®>—3g+3)\T (2% 2011 (1)
= T X zm -+, .
_ 2 F F
SA2eX 26X (L )P =Sq4pX (Lo)p). (2.9 2q(a-1) 0
2.1
The left-hand side of this identity is evidently a tube of the (2.19
simple cubic lattice with a minimal-size transverse cross secthe transfer matrixt (2gX 2¢) is equal to
|
41-51q+289°—8q3+q* 2(—12+149—-69°+q?)
X2p) = .
T(2px2¢) -5+2q 5—4q+0q? .19

Note that in general, we should have considered an addi- For this family,3 consists of two complex-conjugate arcs,
tional element in the basis, namely, the partition,os ,; a self-conjugate arc that crosses the real axig=a2.3026
however, its amplitude vanishes identically. This can be easand a line segment on this axis extending frgm?2.2534 to

ily understood by noting that this particular gragh9) is  g=2.3517, which latter point is thug,. It should be noted
planar ands; 483, is a crossing partition. also that although this graph is included here as the minimal-
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B L S e B B TABLE I. Results for tube graphs of the simple cubic lattice.
The table shows the relation between the degceerdination num-
ben A of aA-regular family or the effective degre®e.;, andqc, if

i a g, exists, for the infinite-length limit of the family. Boundary
conditions are indicated with a subscript F for free, P for periodic,
in a given direction. In column,, an asterisk indicates th&tdoes

N 7] not actually cross the real axis, so that, strictly speakinggncs
defined, but arcs o8 end very close to the real axis, at the posi-
tions given. Similar results are listed for the tubes vty ,, cross
sections.

:E:‘ ol ) Gs A Ay de Ref.

= SC, 2:X 2pX 00 4 2.3517 [31]
| SC, X 2pX o 4.33 2.8723 Here

SC, 4 X 2pX 0o 4.50 3.14980.002F Here

SC, ZpX 2pX oo 4 2.3517 [31]

s . SC, 3X 2pX 0o 5 3.3255-0.0184* Here
SC, 4pX 2pX 0o 5 3.3623-0.0061* Here
K pX oo 4 2.3517 [31]

[ K3 aX o0p 5 3.0452-0.0082* Here
Ky 4X 0p 6 3.6743-0.0085* Here
*II' N 1 1 1 N
0 1 2 3 4
Re(q) =2.8645, and a horizontal real segment froax 2.8566 to

FIG. 1. Chromatic zeros for thec& 2.X (L,) section of the qu._8723. _This I{;\tt_er value.cor_res_ponds o the val_ue](pf
simple cubic lattice, for@ L,=15, i.e.,n=90 (O), (b) L,=30, for this family. This information is listed, together with that
i.e.,n=180 (O). from other lattices, in Table I. There are 16 endpoints: two

are the real valueg=2.8566 andq=2.8723; the other 14

transverse-size member of a family bfxL,xL, sections aré the complex-conjugated pairgj=0.2943-1.9150,
of the simple cubic lattice, it is degenerate in the sense that §=1.9371+2.4040, q=2.6374+1.0937, =2.8250
is actually planar, in contrast to the others that we shall study- 1.4087, q=2.6255-1.4641, q=3.2410-1.2920, and
here. There are eight endpoints/# two of them are given (=2.2645+2.4605. Finally, there are four T points aj
by the real values|=2.3026 andg==2.3517; the other six =2.670:1.117 andq=2.68%+1.500.

end points are the complex-conjugate pais=0.7098

+2.0427, g=1.9923-1.5942, andq=2.9953+1.4266. ) . . )
C. 4 X2 X (L) section of simple cubic lattice

B. 3e X2 X (L )¢ section of simple cubic lattice The section of the simple cubic lattice with the next larger

The section of the simple cubic lattice with the next largertransverse cross section is the>x2gx(L,)g, or equiva-
transverse cross section is thex®@gx (L,)g, or equiva- lently, 2eX4X(L;)e family. For this family, the dimension
lently, 2=X3gX (L,)g, family. For this family, the dimen- Of the transfer matrix is 156. However, there are 20 basis
sion of the transfer matrix is 13In general the transfer elements that correspond to zero amplitudes, so the effective
matrix has dimension 15, but two basis elements, namelgimension of the transfer matrix is 136. This transfer matrix
81,502,603.4F 82403501 6aNA 51 3562 46 Can be eliminated as T(4gX2g), as well as the vectorg and u;y can be found in
they have zero amplitudesSince the entries in the transfer the MATHEMATICA file transfer_sc.m . We have com-
matrix are rather long, we relegate them to thieTH- puted the chromatic zeros fdr,=20 and 40, i.e.n=160
EMATICA file transfer_sc.m that is available with this and 320 vertices, respectively. These are shown in Fig. 2.
paper in the LASL cond-mat archive. We have computed the The limiting curveB consists of eight complex-conjugate
chromatic zeros fot,=15 and 30, i.e.n=90 and 180 ver- arcs; none of them crosses the real axis, so, strictly speaking,
tices, respectively. These are shown in Fig. 1. This value othere is no value ofj.. However, we can defineq()es
L, is sufficiently large that these zeros give a reasonably=3.1498. This value is larger than the corresponding value
accurate indication of the location of the asymptotic limiting for the family 3:X2XLg q.~2.8723 and larger than the
curves comprising the locus. As is generally true, for the value for the square lattiog.(sq)=3. There are 11 pairs of
larger value ofL,, and hencen, the chromatic zeros move complex-conjugate end pointg=0.073+1.741, q=1.582
slightly outward, approaching the limiting curvB from +2.845, q=1.684+2.871, q=2.379-2.503, q=2.513

smaller values ofq|. +1.569, q=2.661+1.816, q=2.697+1.889, =3.034
The limiting curveB consists of two complex-conjugate +=1.364, q=3.035-1.385, =3.150+0.004, and q
arcs, a self-conjugate arc that crosses the geakis atq =3.383+ 1.157i. Finally, there are three pairs of complex-
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<+ LI LA |I’1 the baSIS P:{1,52'4+ 52,6+ 51'5"‘ 53’5+ (51,6+ 53,4,
01,502,671 62,463 51 03 401 57+ 63 462 6+ 1,603 51 01,602 4,
0160341 61502 4 026035, the transfer matrix can be writ-
ten as
« b ) T(3pX 2p)
Tll T12 T13 T14
_ T21 T22 T23 T24
| 1 2(-3+q) 12-6q9+q® -2(—4+q) |’
:Eo I i 0 —2  —4(-3+q) 15-79+q?
3.1
where
o[ ) T,,=1089- 1578+ 105492 — 41793+ 1039*— 150°+q°,
| (3.2
T1,=6(—292+ 3940 — 2319°%+ 749> — 13q*+ q°),
(3.3
P S T S B T13=6(110- 1179+ 519%— 1193+ q*), (3.9
0 1 2 3 4
Re(q) T14=3(154— 149+ 6002 —129°+q%), (3.5
FIG. 2. Chromatic zeros for theX 2:X (L,)¢ section of the = — 90+ _ 249083
simple cubic lattice, foKa) L,=20, i.e.,n=160 (O), (b) L,=40, To1= 90+ 719-209"+ 20", 3.6
e.,n=320 (©). T = 203- 1899+ 7192 — 134°+ q*, 3.7
conjugate T pointsq=2.381+2.404, q=2.695+1.793, T..= — 109+ 800 — 2192+ 203 38
andq=2.972+1.578. 23 0a—21g7+2q", 39
T,=—81+529—129%+¢°. 3.9
Ill. TUBES OF THE SIMPLE CUBIC LATTICE
WITH TRANSVERSE PERIODIC The vectorsy andu,y are given by
BOUNDARY CONDITIONS
The method we have used to compute the chromatic poly- (—2+q)(—1+0)q(—13+149-69°+q°)
nomials and the transfer matrix is the same as in Sec. Il. The 6(—2+9)%(—1+q)q
only difference is that we enlarge the single-layer edge set v= 5 ,
= 6(—2+q)(—1+a)q
3(=3+a)(=2+q)(—1+q)q
A. 2pX2pX (L, section of simple cubic lattice (3.10
This family has(trivially) the same chromatic polynomi- 1
als as the family sc(2<x2¢X (L,)g. (This is not true for the
finite-temperature Potts model partition function, or equiva- _ 0
lently, the Tutte polynomial; however we only deal with the Uia= 0 (3.1

chromatic polynomial herg.Thus, the transfer matrix and
chromatic polynomials are given, respectively, by E@sl)
and(2.6).

0

We remark that in this case the most general basis contains

an additional partition:8; 56, 603 41 02403561 6. This one

can be dropped, as it corresponds to a vanishing amplitude.
In general, finite-size artifacts are minimized if one uses We have computed the chromatic zeros Ege=15 and

periodic boundary conditions in as many directions as pos30, i.e.,n=90 and 180, respectively. These are shown in

sible. Hence, it is useful to calculafe and B for the same Fig. 3. The limiting curve5 contains three pairs of self-

section of the simple cubic lattice as in the previous sectiongonjugate arcs. Although the arcs do not cross the real axis,

but with periodic boundary conditions imposed on the longerso that, strictly speaking, nq. is defined, (I¢)ef=3.33,

of the two transverse directions. This family is again bipar-which is larger than the valug.=3 for the square lattice-

tite. In this case, the dimension of the transfer matrix is 4. .The locus B has 12 endpoints:q=0.5061+2.6413,

B. 3pX2pX (L )¢ section of simple cubic lattice
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M | ﬂm
ol ( _ ol
30_ . . é - 30_
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T { - T
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! 1 2 3 "o 1 2 3 4
Re(q) Re(q)

FIG. 3. Chromatic zeros for thepX 3pX (L,)r section of the FIG. 4. Chromatic zeros for thepX 45X (L,)¢ section of the
simple cubic lattice, fora) L,=15, i.e.,n=90 (O), (b) L,=30, simple cubic lattice, fofa) L,= 20, i.e.,n=160 (), (b) L,=40,
i.,e.,,n=180 (O). i.e.,n=320 (O).

0=2.1301+2.4407, q=3.0251+2.5249, q=3.0412 Mmanner as to reduce the gaps between the arcs. Here we
+1.2643, q=2.9328+1.1238, andq=3.3255+0.01839. observe the same qualitative behavior as the area of the
transverse cross section of the tube section increases. If this
trend continues for progressively larger transverse widths or
cross sectional areas, then the number of arcs could increase

In this case we have 56 basis elements. However, ther@ithout bound as one approaches the respective infinite 2D
are 11 trivial basis element that lead to a vanishing amplior 3D lattices. Now in the two cases where the |5chave
tude. The transfer matrix and the vectorandujy are listed  been calculated exactly for regular lattices, namely, dhe
in the MATHEMATICA file transfer_sc.m . Among the =1 |attice (with periodic boundary conditions; for free
other 45 basis elements, we have numerical indications thajoundary conditionsB=%) and the triangular latticéde-
there are 19 additional vanishing amplitudes. fined as the limilL — o of LpX o strips[23)]), this locus has

The limiting curve B (see Fig. 4 contains eight self- no prongs or endpoints. Thus, one could imagine that as the
conjugate arcs. As in thepk 2pXoop case, this locus does width or cross sectional area of the strips or tubes increases
not actually cross the positive reglaxis, but again has end- to infinity, the endpoints of arcs join so that the gaps between
points that lie very close to this axis, and we obtaiR)t  these arcs disappear, and prongs either have lengths that go
=3.36. As expected, this is larger than the valug){z to zero or have end points that join to form closed bound-
=3.33 that we found for the tubep& 2pX . There are aries. We also observe that, for a given width or, for the
nine pairs of complex-conjugate end pointg=—0.095 present families of tube sections, for a given transverse cross
+2.700, q=1.803-3.031, g=2.176+3.196, q=2.841 sectional area, there tend to be fewer arcs when one uses
+1.954, q=2.910+-2.080, q=3.263-1.333, q=3.279 periodic rather than free boundary conditions for the trans-
+1.377, q=3.362+0.006, andq=3.892+1.542. Finally,  verse directiofs). This is in accord with the fact that calcu-
there is one pair of complex-conjugate T pointig=3.204  lations for strips with periodic longitudinal boundary condi-
+1.665. tions[11,36,40,46,49,45ound no prongsor line segments

Another property that was observed in our earlier calcu-on the respective lodB, i.e., in all cases studied, these loci
lations of chromatic polynomials for strips of 2D lattices is did not contain endpoints. Finally, our calculations are con-
that, for a given type of transverse boundary conditions, fosistent with the expectation that as the area of the transverse
infinite-length strips with free longitudinal boundary condi- cross section goes to infinity, the outer envelope of the locus
tions, as the width increases, the number of arcs8oin- B approaches a limit, which crosses the real axigjat0,
creases and the end points of these arcs move in suchcg(sc), and other poifs) between these two.

C. 4pX2pX (L ,) ¢ section of simple cubic lattice

011111-8
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IV. FURTHER REMARKS ON THE STRUCTURE OF B dressed the question df(q), i.e., the lower critical dimen-

In the introductory section, we discussed some dil‘ferencegionality of theg-state Potts antiferromagnet, below which it
in the locusB that depend or’1 whether one uses periodic or> disordered foif =0. An equation yieldingl; as a function

L - . of q can also be solved to yield, as a function ofd, so
free longitudinal boundary conditions. Here we include some . . : :
further remarks relevant to our present results. It has beeﬂC(q) andqc(_d) constitute equivalent mformanon about the
established that the structure Bfinside its outer envelope system. Mattis argued thalt(q) could be estimated by not-

and, in particular, the question of whether and where iing thatW is a measure of disorder, and if it is significantly

crosses the positive real axis betweep=0 and q greater than 1, then the system would be sufficiently disor-

—q.({G}) are dependent upon the boundar Conolitionsdered that one would not expect there to be a phase transition
us(c]-:‘cd For examplg exact cglculations tq;Xooyand L at T=0. Taking the criterion thatV<<2 as the demarcation
' ' P P

Xoop strips of the triangular lattice show that the respectivevalue for which a zero-temperature phase transition could

loci B cross the real axis a=2 [36,45,49, corresponding oceur, this yields the result

to the fact that the Ising antiferromagnet hasfraistrated In(q—1)
T=0 critical point on these strips; however the |dgiob- d(qQ)=—F/——. (5.2
tained in[23,31 for LpX o strips or in[30] for LgXoog |n((q_1))
strips of the triangular lattice do not, in general, cross the real (9-2)

axis atq=2, nor is this crossing obtained for the infinite- ] i i
width limit of the cylindrical strips calculated if23]. Simi-  AS noted, this may equivalently be regarded as an equation
larly, for Lgx %op and Lpx op strips of the square lattice it for dc as a function ofd and ford=3, this ansatz gives
was found tha3 passes through=0, g=2, and a maximal
value, q=q({G}) [11,36,40,4% In contrast, for the corre- dc(d=3)=4.15. (5.3
sponding strips of the square lattice with free longitudinal
boundary conditions, it has been found tifatloes not con-
tain q=0 or, in generalg=2, and while the arc end points
nearest to the origin move toward this point as the width
increasedleading to the inference that for infinite width,
would pass through=0), there is no analogous tendency of
arcs onB to elongate towardj=2 [30,31,47,50 There is d
also no tendency for the arcs on the Idgifor our tube %~ ing for d—oo. (5.9
sections of the simple cubic lattice with free longitudinal n
boundary conditions to move towarp=2 as the cross sec-
tional area increases.

A second point concerns the positions of the leftmost arcs. q.=<4d (5.5
We find from the exact calculations reported here that for the ¢
infinite-length tube sections of the simple cubic lattice of theang evidently is a smaller and smaller fraction of this upper
form (L,)pX(Ly)pX>g with sufficiently large transverse pound agl gets large, with
cross section, namely,=4, L, =2, B contains support in
theRe(q) <0 half plane. This suggests that for this family of 1
tube sections of the simple cubic lattice with periodic trans- Rq.~ Z1Ind for d—oo. (5.6)
verse boundary conditions, as the transverse bageg— ,
the complex-conjugate curves d@hcould approach the ori-
gin from theRe(q)<0 half plane, as happens for the limit VI. FAMILY (K m)"
L—o of LpX oo strips of the triangular latticE23] and suf-
ficiently wide strips of the square lattice of the forht
X o0 [30,47), LpX g [46,47,5Q, andLgX «p [36,38,46.

Our exact resultsV and q. for tube sections of the simple
cubic are consistent with this estimate from the an§aty).

It is also of interest to ask what the behaviorgfis for
large d on Cartesian lattices. The ansa&.1) yields the
asymptotic behavior

This is in agreement with the upper bou(id12

It is also useful to calculat® and study the dependence
of q. on vertex degree for infinite-length limits of other
families of tube graphs. We report calculations here for a
family of tube graphs whose transverse cross section is the
V. BEHAVIOR OF g, FOR [ WITH LARGE d complete bipartite grapK,, ,. The grapiK, , is A-regular
graph withA=m. We construct our tubes with thi€, ,
transverse cross section connected lengthwiséimes, so
that each vertex of onk, ,, subgraph is connected “verti-

For the d-dimensional Cartesian latticg?, Mattis sug-
gested the ansaf24]

(q—2)¢ cally” to the corresponding vertex of the neKt;, . This
W(E",q)=1+ q—. (5.1)  recursive family of graphs is denoted a6 m) "= The value
(q—1)9* of A is for this family
This agrees with the general resit§{C},q)=q—1 for d Agii(Kinm) "% FBC, ;L ,—%)=m+2. (6.1

=1, and, for the square lattid® with q=23 yields the esti-
mate W(sq,q=3)=3/2, which is within 4% of the known The computational method is the same as in the simple cubic
result W(E?,q=3)=(4/3)*?=1.53% ... [16]. Mattis ad- families: the transfer matrix and the partition function are
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computed using the same formul@sl)/(2.6). The only dif- D L o L B L e B
ference is the single-layer edge &%

A. Family (K, )" [ "\\ 1
The family (KZ,Z)LZ is trivially equivalent to the family
sq(4pX Lg), so by Eq.(2.9) it is also equivalent to the family @

SA2X 2eX (L,)p). The transfer matrix, written in the basis
P={1,6 5+ 83 4}, takes the same form as E.17); and the r
partition function is equivalent to Eq2.16). : .

B. Family (K39"

The transfer matrix for the familyKs 3) Lz has dimension
5. In the basiP={1,61 ;+ 81 3+ 8,31 451 S46t I56,0123
+ 0456, 01,204,571 61,204 61 01,205 61 61,304 51 0130461 61,305 6 i
+ 82,3045 6230461 02,3056, 01,2304 51 01230461 01,2305 6 \

+ 84560121 04560131 8456023, We can write the transfer 3

matrix as N

To1 Ty Toz Toa Tos - \-”/ 1

1 2(=3+q) 0 T4 2(—2+0Q) - PP PR IR EPSEEr BN

0 1 2 3 4
0 1 0 -3 2-q
6.2 Re(q)

FIG. 5. Chromatic zeros for theKg o)™ graph for(a) m=L,
=15, i.e.,,n=90 (O), (b) m=L,=30, i.e.n=180 (O).

where

T11=1234- 1747+ 11379°— 43793+ 1059* — 150°+ q°,

(6.3 Ta=12—-5q+0? (6.18
T1o=6(—252+337q— 1989%+ 650°— 129*+ g°), Finally,
6.4
€49 (—1+0q)q(31-479+289%>—8qg°+q*
T13=2(36-560+339°-99°+q"), (6.5 6(—1+q)q(—7+10g—592+q°%)
— _ 3
T14=9(89—94q+ 4392 —109°+q%), (6.6) V= 2(—=1+a)°q ,
. 9(—1+a)q(3-3q+0?)
T15:6(_25+24q_8q +q )1 (67) 6(_1+q)2q
6.1
To=—113+91q—279%+ 3¢°, (6.9 6.19
1
T,,=174— 153+ 540%— 10g°+q*, (6.9 0
T,=—10+13q—609%+q°, (6.10 Ug=| O (6.20
T,4=3(— 40+ 289~ 89%+q°), 6.11) 0
0
Ts=29-21q+40?, 6.1
2 1a+4q (612 We remark that in this case there is an additional element
Ta=55-27q+ 302, (6.13 of the basisd; ;30456 that should be taken into account in
general. However, it corresponds to a vanishing amplitude.
Ta=—3(29- 179+ 309?), (6.14 Chromatic zeros fork(s 3 Lz with L,=15 andL,=30 are
shown in Fig. 5, as well as the limiting cun& The limiting
Ta3=9-129+6g°—q°, (6.15  curveB contains six connected pieces. None of them crosses
the real axis. Thus, strictly speaking, there isquodefined.
T3=—18(—3+qQ), (6.16 However, by extrapolating the closest points to the real axis
we getq.=3.045, which is slightly greater than the value for
Tas=—3(7-5q+0?), (6.17  the square lattice.= 3.
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There are 14 end pointsq=0.8197+2.9764, q
=1.9761+2.5559, q=2.8190+1.5587, q=2.9364
+2.5742, 9=3.6220t2.0051, q=3.0283-1.3476, and
g=3.0452+0.008246. There are two complex-conjugate T
points atq=2.949+1.870.

C. Family (K44"2

In this case the transfer matrix has 15 elements. However,
three of them correspond to null amplitudes, so we have an
effective 12-dimensional transfer matrix. This matrix is
listed in theMATHEMATICA file transfer_Knn_tube.m
that is available with this paper in the LASL cond-mat ar-
chive.

There are eight connected piedsse Fig. 6 and none of
them crosses the real axis. The closest points to that axis are
the complex-conjugated pair~3.6743-0.0085. There are
ten endpoints(that were computed using the resultant
method: q~1.0084+3.7740, q=~1.9104+3.4341, (q
~2.9457+3.2436, g~3.0385+2.8658, g~3.5456
+1.3512, g~3.6006+3.2332, ~3.6260+1.4516, (
~3.6743-0.0085, (~3.78572.3839, and g~3.8460
+2.7980. There are four T points af~3.070+2.904, and
g~3.567+3.158.

VII. CONCLUSIONS

In this paper we have reported exact solutions for the™
zero-temperature partition function of tlgestate Potts anti-
ferromagnet on tubes of the simple cubic lattice with various,
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FIG. 6. Chromatic zeros for theK( o)™ graph for(a) m=L,
=40, i.e.,n=320 (@), (b) m=L,=80, i.e.n=640 (O).

ing family of tube graphs whose transverse cross section is

transverse cross sections and boundary conditions and witRrmed from the complete bipartite grapy, m -

arbitrarily great length. We have used these to calculate, in
the infinite-length limit, the resultant ground-state degen-
eracy per sitaV and the singular locu8 which is the con-

tinuous accumulation set of the chromatic zeros. In particu-
lar, we have calculated the value gf or (q.)es for these

ACKNOWLEDGMENTS

The research of R.S. was supported in part by the NSF
Grant No. PHY-9722101. The research of J.S. was partially

infinite-length tubes. Our results show quantitatively howsupported by CICyT(Spain Grant Nos. AEN97-1880 and

this quantity increases as the effective coordination numbeAEN99-0990. J.S. would like to acknowledge the warm hos-
for a given family of graphs increases and are a step towargitality of the C. N. Yang Institute for Theoretical Physics,
determiningq, is for the infinite simple cubic lattice. We where this work was initiated. We thank S.-C. Chang and A.
have also presented similar calculations for another interes&okal for recent discussions on related research projects.

[1] R. B. Potts, Proc. Cambridge Philos. Sd8, 106 (1952.

[2] F. Y. Wu, Rev. Mod. Phys54, 235(1982.

[3] M. Aizenman and E. H. Lieb, J. Stat. Phy&1, 279(1981).

[4] Y. Chow and F. Y. Wu, Phys. Rev. B6, 285(1987.

[5] L. Pauling, The Nature of the Chemical Bor{@€ornell Univ.
Press, Ithaca, 1960p. 466.

[6] N. G. Parsonage and L. A. K. Staveldyisorder in Crystals
(Oxford University Press, Oxford, 19Y.8

[7] R. C. Read, J. Comb. Theorg, 52 (1968.

[8] R. C. Read and W. T. Tutte, iSelected Topics in Graph
Theory edited by L. W. Beineke and R. J. Wils¢Academic
Press, New York, 1988Vol. 3, p. 15.

[9] W. T. Tutte,Graph Theory Encyclopedia of Mathematics and
Applications Vol. 21(Addison-Wesley, Menlo Park, 1984

[10] N. L. Biggs, Algebraic Graph Theory2nd ed.(Cambridge

011111-11

University Press, Cambridge, England, 1293

[11] R. Shrock and S.-H. Tsai, Phys. Rev5k, 5165(1997; E56,

1342(1997.

[12] We comment here on cases whegé{G}) is nonintegral. The

Potts antiferromagnet can formally be defined for positive real,
as well as integral, g, via the formula Z(G,q,v)

=36 ceq® "), whereG' is a spanning subgraph &

(i.e. a subgraph containing all of the vertices and a subset of
the edges of3), andk(G') ande(G’) denote the number of
connected components and edgessin However, since-1
<vp=0 for the Potts antiferromagnet, this model does not, in
general, have a Gibbs measure for nonintegralnd this can
lead to unphysical behavigd3,14 such as negative specific
heat and nonexistence of a thermodynamic limit independent
of boundary conditions. In contrast, for positive integyabne



JESUB SALAS AND ROBERT SHROCK

PHYSICAL REVIEW B4 011111

can always define the partition function for the Potts antiferro-[33] R. Shrock and S.-H. Tsai, J. Phys.34, 9641(1998; Physica

magnet aZ(G,q,v) = 2, exp(—BH) whereg=(kgT) ! and

A 265, 186(1999.

H:_J2<ij)5ﬂ'i o with J<0, which obviously has a Gibbs [34] R. Shrock and S.-H. Tsai, Phys. Rev. 38, 4332 (1998;

measure.
[13] J. Salas and A. Sokal, J. Stat. Phg6, 551 (1997).
[14] R. Shrock, Physica 283 388 (2000.

[15] A. Lenard(unpublished (cited in Ref.[16]).

[16] E. H. Lieb, Phys. Rev162 162 (1967.

[17] R. J. Baxter, J. Math. Phy41, 784 (1970).

e-print cond-mat/9808057.

[35] R. Shrock and S.-H. Tsai, J. Phys. 32, L195 (1999, 32,
5053(1999.

[36] R. Shrock and S.-H. Tsai, Phys. Rev. @b, 3512 (1999;
Physica A275, 429(2000.

[37] A. Sokal, e-print cond-mat/9904146.

[38] R. Shrock, Phys. Lett. 261, 57 (1999.

[18] N. L. Biggs, R. M. Damerell, and D. A. Sands, J. Comb. [39] N. L. Biggs, LSE Report No. LSE-CDAM-99-03, 199@n-

Theory, Ser. B12, 123(1972.

[19] N. L. Biggs and G. H. Meredith, J. Comb. Theory, Ser2®
5 (1976.

[20] N. L. Biggs, Bull. London Math. Soc, 54 (1977.

[21] S. Beraha, J. Kahane, and N. Weiss, J. Comb. Theory, Ser.

27,1 (1979.

[22] S. Beraha, J. Kahane, and N. Weiss, J. Comb. Theory, Ser.

28, 52(1980.
[23] R. J. Baxter, J. Phys. 20, 5241(1987.
[24] D. C. Mattis, Int. J. Mod. Phys. B, 103(1987.

published.
[40] N. L. Biggs and R. Shrock, J. Phys. 32, L489 (1999.
[41] R. Shrock, in Proceedings of the 1999 British Combinatorial
ConferencdDiscrete Math231, 421 (2001)].
2] R. Shrock, Physica 281, 221 (2000.
43] S.-C. Chang and R. Shrock, Phys. Rev6ZE 4650(2000.

%44] S.-C. Chang and R. Shrock, Physica286, 189 (2000.

45] S.-C. Chang and R. Shrock, Ann. Phy# be publishey
e-print cond-mat/0004129.

[46] S.-C. Chang and R. Shrock, Physica280, 402 (200J).

[47] J. Salas and A. Sokal, e-print cond-mat/0004330.

[25] R. C. Read, in Proceedings of the 3rd Caribbean Conferencpg] s.-C. Chang and R. Shrock, Physica286, 131 (2001).

on Combinatorics and Computirignpublishe@t Proceedings

[49] S.-C. Chang and R. Shrock, Physica282 307 (200J).

of 5th Caribbean Conference on Combinatorics and Computf50] J. L. Jacobsen and J. Salas, e-print cond-mat/0011456.

ing (unpublished

[26] R. C. Read and G. F. Royle, @raph Theory, Combinatorics,
and ApplicationgWiley, New York, 1993, Vol. 2, p. 1009.

[27] R. Shrock and S.-H. Tsai, Phys. Rev5E, 6791(1997); 56,
2733(1997.

[28] R. Shrock and S.-H. Tsai, Phys. Rev5E, 3835(1997).

[29] R. Shrock and S.-H. Tsai, Phys. Rev5E, 4111(1997.

[30] M. Rocek, R. Shrock, and S.-H. Tsai, Physica 252, 505
(1998.

[31] M. Rocek, R. Shrock, and S.-H. Tsai, Physica 259, 367
(1998.

[32] R. Shrock and S.-H. Tsai, Physica2s9, 315(1998.

[51] Periodic and twisted periodic longitudinal boundary conditions
yield the same locus3, so theB for the cyclic and Mbius
strips of a given type are the same and separdsefgr the
torus and Klein bottle strips of a given type are the same
[38,40,49.

[52] D. A. Bini and G. FiorentinompsoLVE - Version 2.0, FRISCO
report (1998 available at http://www.dm.unipi.it/pages/bini/
public_html/papers/mpsolve.ps.Z(unpublishett ~ Software
package available at http://www.dm.unipi.it/pages/bini/
public_html/software/mps2.tar.gmnpublishedl

[53] D. A. Bini and G. Fiorentino, Numer. Algorithm&3, 127
(2000.

011111-12



